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Constitutive models for the linear viscoelasticity of polymers are presented for the relation between the
relaxation modulus and the molecular weight distribution (MWD). We also compute the MWD from a
simulated relaxation modulus curve by first obtaining the rheologically effective distribution (RED) as
a function of time, and converting this into the MWD by melt calibration; that is, the relation between
timescale and the molecular weight. This procedure has similarities with the widely used universal cali-
bration with solved polymers. The main principles of our technique are applied here to familiar relaxation
modulus data, for which we present two models: (1) an analytical model derived from control theory,
which is known capable of modelling partially observed system and (2) a practical characteristic model
for obtaining usable results. No relaxation time or spectrum procedures are used to model the process
of linear viscoelastic relaxation. The use of relative calculations and melt calibration dispenses with the
need to know the real chain structures such as branching and entangled chain dynamics, and the model
remains useful for future investigations of polymer chain structures and dynamics, such as using tube
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1. Introduction

Determining the molecular weight distribution (MWD) or pre-
dicting viscoelastic properties requires the relaxation modulus or
spectrum to be generated [1-21]. To overcome this ill-posed prob-
lem, several authors have recently used the double reptation model
or the general mixing rule as analysed by Anderssen and Mead [22].
Thimm et al. [13] provided the first analytical relation for deriving
the MWD from the modelled relaxation spectrum, even though this
is impossible to measure directly.

Here we present two models for the relaxation modulus: The
first is an analytical model based on the impulse function and
control theory, which are well-known principles in mathematics,
nuclear physics and signal control systems. Only two constants
that depend on the polymer chemical structure are used, with no
ad hoc tuning being necessary. The second, characteristic model
uses the findings of the first model but is more practical and
uses the measured time-dependent relaxation modulus, which is
related to the MWD, w(M). The computation strategy involves
first finding a form of the MWD and relations using the rapidly
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analysed characteristic model, and then confirming the obtained
results using the analytical model, if necessary. Here we present
the main principles of the new method with the help of the
familiar relaxation modulus, G(t). The basic criteria described
above yield the procedure by which the MWD and broad-range
curve of the linear viscoelastic relaxation modulus are simultane-
ously computed from simulated measurements of the relaxation
modulus.

2. Theory

2.1. Relaxation modulus and structure information by the control
theory

The modern control theory as applied to dynamic systems is
used to model the relaxation modulus. One of the most important
types of analysis is input-output modelling, in which the output
data resulting from applying a test input to a system are anal-
ysed to yield useful information on cause-effect relationships and
to reduce the model. Since this viewpoint is new in this field, we
explain its basis here.

Molecular theories of rheology based on independent chain
response (elastic dumb-bell, Rouse, Zimm) or pseudo-independent
chain response (unmodified Doi-Edwards) can be used for predict-
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Nomenclature

Go new fitted relaxation modulus at t;

Gc(t) characteristic relaxation modulus

Hf conversion factor between M and t scales

Mf structural value

M(t) calibration curve for melts

P entanglement value

P’ Rouse value

R ratio of effective distribution ranges

w;(t) effective fraction of the group of molecules

w/(t), w'(logt) rheologically effective distribution, (elastic)
RED

w’(t), w(logt) rheologically effective distribution, (vis-
cous) RED”

wg(t), we(logt) characteristic effective distribution, (elastic)
RED

ing of the MWD according to Graessley [23] in Polymeric Liquids and
Networks: Dynamics and Rheology (2008). For such systems, equa-
tions for viscosity, recoverable compliance and relaxation time in
systems of arbitrary polydispersity can be obtained from the stress
relaxation modulus, expressed as the sum of independent contri-
butions. Thus,

G(t)z ZwiG,-(t). (1)

in whichw; is the weight fraction of componentiin the mixture, and
Gi(t) is the relaxation modulus for the monodisperse component.

We continue to develop the above principle further by convert-
ing weight fraction w;(M) as a function of molecular weight M to the
function of time t or effective fraction wi(t) = w;(M) with the found
relation between t and M discussed in Section 2.3. A similar conver-
sion, but in the opposite direction, is widely used in wet chemical
methods such as gel-permeation chromatography (GPC) tracing
with time- or size-exclusion chromatography (SEC) for detecting
the MWD.

Knowledge of the factors that influence the effective fraction,
w;(t), is not essential, such as different types of chain dynamics,
molecular friction and elasticity, reptation, primitive path fluctu-
ations, constraint release, and other entangled and disentangled
chain dynamics.

Chain types in the effective fraction w;(t) can conform to any
linear short- or long-chain branched (SCB and LCB, respectively)
structures, combs, networks, H-shapes with multiple arms, or any
combinations of complete molecules or their segments. The final
structure, molecular weight or construction of the statistical w;(t)
fraction of a single molecule or groups of molecules is not important
at this point—only its effects on viscoelasticity. Section 2.3 discusses
the real sizes of the fractions. Now we rewrite Eq. (1) to get relax-
ation modulus functional as presented by Anderssen and Loy [24]
for G(t) as follows:

G(t) = ZWI'“)GI‘“)' (2)

We introduce the rheologically effective distribution (RED), w(t),
and impulse response h(t) after induced stress at time tg. Relaxation
modulus G;(t) in Eq. (2) has relation to a scaled product of P'Ggh(t;),
in which constants Gy is zero modulus and P’ is acting as a scaling
factor. Thus we can rewrite Eq. (2) for G(t) as

t
G(t) = GOP’/ w(t)h(t — 7)dr, (3)

o0

which can be explained and developed further by the control theory
with the explanation starting from the basis.

We excite the system with a small stress induced by a small
pulsed strain that is applied at time ty. Pulse response y(t) is
obtained from impulse response h(t) and by sampling the active
molecules in distribution w(t) between some time interval:

t
y(t):/ w(T)h(t — 7)dr. (4)

00

This equation is the familiar linear formula used in control theory,
which is known as a novel principle to adjust and rule one variable
or function in a closed system and now in our case for MWD. Since
the MWD function is normally a function of logarithmic variables,
or here RED w(log t), we have to rewrite all variables and functions
in Eq. (4) on a logarithmic scale. The logarithmic convolution (also
known as the scale convolution) can be related to ordinary convolu-
tion by taking the logarithm of t, and since this is a linear operation
it is commutative, associative, and distributive. Thus we can write
h(t)=t and dt as d(log 7).

Pulse response y(logt)=10g(G(t)/Gp) is a normalized relaxation
modulus with a maximum value of zero on the logarithmic scale
at ty. The value for zero relaxation modulus Gy = G(tg) is obtained
by fitting G(t) to experimental measurements. We then obtain the
complete relaxation formula in the case where a small and constant
strain is induced:

G(t) logt
log <= —P’/ w(log t)(logt — log 7)d log 7. (5)
0 _

o0

With true distributions the normalized response on the log-
arithmic scale decreases, making the overall G(t) a completely
monotonically decreasing memory function, as analysed generally
by Anderssen and Loy [25], and thus we have to add a negative
sign to the right-hand side of Eq. (5). Entanglement constant P’ is
included since not all molecules in the distribution w(t) related
to MWD w(M) will be active during the relaxation process due
to intermolecule interactions by Matsuoka [26]. Also, the relation
(AG(t)/ Aw(t)) < P" at time step At depends on the baseline chem-
ical molecular structure, chain types (SCB or LCB) and the average
molecular weight. Therefore, it is necessary to adjust the normal-
ized w(log t) distribution with the value of P’ by feedback to obtain
the fit for G(t) as illustrated in Fig. 1, where the normalized distri-
bution in Eq. (5) is

/ w(logt)d logt =1. (6)

oo

RED function w(t) can be regarded as a GPC trace with a time-
exclusion chromatography or SEC elugram function as a function
of time. The largest molecules exit first from the GPC/SEC column,
in a similar way to these molecules initially having greater relax-
ation effects with many entanglements and structural units during
relaxation experiments or respectively orientating at the lowest
frequency and shear rate.

To clarify the differences in the presented principle, we rewrite
the simplified general form of classical integral equations with
kernel k(t, M) used in principle by [1-22], where relaxation time
procedures are essential. Thus, for normalized relaxation modulus
g(t)=G(t)/Gg, we get a Fredholm-type integral equation:

g(t) = / w(M)k(t, M) dM. (7)

o0
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Fig. 1. Graphical demonstration of the system and polymer melt. The stress in the molecules decreases during relaxation in distribution w(log t), and the multiplication
product must be negative. The response at time t; is defined by area A(t; ), which is scaled by factor P’ to obtain the system response as a normalized relaxation function
log(G(t)/Go). Precise modelling of system response G(t) for the system input based on feedback information P’ yields the correct RED function.

To aid the comparison, we rewrite Eq. (3) in a similar simplified
style as

t
g(t):/ w(T)h(t — t)dr. (8)

o0

Both Egs. (7) and (8) are known as convolution integrals, but
the functional Eq. (8) has no relaxation time procedures or vari-
ables at different scales. Thus there are fundamental differences in
relaxation times A and their discrete spectra are artificial, whereas
continuous distribution RED w(t) is a true function in the form of
statistical distribution for viscoelastic effects and MWD.

The form of the RED w(log t) function may be roughly similar
to the relaxation time spectrum. In summary, there are essential
and fundamental mathematical differences between the models,
and the presented RED function w(log t) includes all types of chain
dynamics.

2.2. Model for real polymer melts by the analytical model

Real polymer relaxation occurs in two phases: Rouse [27]
relaxation, followed by entangled chain dynamics and reptation,
primitive path fluctuations and constraint release. We refer to
the second phase here as entanglement relaxation that exhibits
mostly elastic effects and responses. Molecular entanglements
will relax after deformation roughly at times t>0.001s, where
most observations of G(t) are made. Rouse theory starts from the
molecular friction coefficient, where includes rapid elastic dumb-
bell effects that are mostly relaxed before melts are measured.
We employ familiar terminology to introduce the principle of
Rouse (viscous) and entanglement (elastic) relaxations, but as dis-
cussed in Section 2.1, the real chain dynamics are still open and
both Rouse and entanglement relaxations have viscous and elastic
components.

Since we have the same MWD acting for both Rouse relaxation
and later for entanglement relaxation, we also use the entangle-
ment distribution in common logarithm scale w'(logt) for the
earlier effective Rouse distribution w”(log tg), which corresponds
to w”(logt — logR) = w”(logt/R) by standard time shifting. This is
achieved simply by copying function w’(log t) after dividing t by the
ratio, R, of the effective or “relaxation time” ranges. The distance
for the same point for the effective Rouse and entanglement relax-
ations and the respective distribution, w/(logt), is R=te/tg. Since
Rouse relaxation occurs roughly at t <0.001 s (which is outside the
measurement range) and the form of the effective distribution has

a minimal effect on the obtained relaxation, the use of w”(logt/R)
with a similar form is the best available choice without more infor-
mation; nevertheless, the form of the w” distribution can also differ.
We use familiar viscoelastic notation since RED (or RED’) w'(log t)
and RED” w”(log t/R) exhibit mainly elastic and viscous effects,
respectively, in the observation range. We convert the relaxation
formula of Eq. (5) to the entanglement and Rousean relaxation
described by Eq. (9) and impulse response log t — log T =log(t/t).

In practice, the same distribution, w/(logt), is copied earlier to
the timescale, and we obtain the following complete relaxation
formula:

log t
log 0] = —/ (P’w’(log T)+P'w” (log %)) log ;d logt, (9)

Go
where the scalar values are 0<P' <20 for entanglement and
0 <P’ <20 forthe Rouse relaxation ranges. The values of P and P’ are
not ad hoc, but are developed by the software during the procedure
of fitting the relaxation modulus data and w(t) distribution.

Eq. (9) models relaxation modulus G(t) without difficulty, but
solving distribution w'(t) or functions with a logarithmic kernel is
a severely ill-posed problem reported by Bruckner and Cheng [28].
Therefore, in Section 2.4 we present an alternative solution method.

2.3. Melt calibration

We need to convert distribution scales between molecular
weight scale M and rheologically effective scale as a function of time
t by introducing the melt calibration, which is the relation between
rheological properties and the molecular weight.

A test point in a relaxed polymer melt after small deformation
at ty can be approximated statistically as a nonrelaxed sphere of
volume V; with an average molecular size up to M(ty). The appar-
ent sphere of effective molecules starts to shrink as a function of
radius r(t), with those molecules located farthest from the test point
relaxing first due to elastic effects or molecular and any types of
chain dynamics such as reptation, primitive path fluctuations and
constraint release in longitudinal modes. Molecules of any kind (as
discussed in Section 2.1) that are farther from the test point deform
less, as shown in Fig. 2a. The average molecular size inside the
sphere is M = Mf dV/Vy, where Mf is the polymer structural value that
depends on the molecular structure and weight. The effective vol-
ume for the nonrelaxed sphere and thus the effective molecular size
change dM, as a function of r(t), is given by dM=Mf(4/3)r(dr3/Vy),
where Hf=(4/3)r ~4.19 is the conversion factor between scales M
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M(g/mol)

M w(log M)

P'w'(log t)
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Fig. 2. Relation model for melts, and conversions from the RED to the MWD. (a) In a relaxed polymer, a test point in the melt after a small shear deformation at t, is equivalent
to a statistical nonrelaxed sphere of volume Vj, which shrinks as a function of radius r(t) as the farthest molecules or the ends of individual molecules relax first, resulting in
less deformation relative to the test point. (b) Melt calibration curve M(t) for PS, and the respective typical universal calibration curves for different SEC columns marked by
dashed lines. (c) RED w'(log t) from the timescale converted to inverse molecular weight scale w (top) and MWD w(log M) or w(log M) = w’'(logt) using Eq. (11).

and t. By induction, we can similarly model all the test points of the
melt, where the distance to walls is greater as r(tgp).

The relation between molecular weight scale M and rigid
timescale t is obtained using a homogeneous linear differential for-
mula. The additional decrease in dM converted by Hf on the M scale
according to —dM/dt must equal the molecular weight scale divided
by time, M/t, or

dM M
Hfﬁ + T 0.

Solving Eq. (10) yields a simple relation for t>0, which is the
melt calibration, M(t), as a function of time, where for the factor Mf
valueisMat t; =1s:

(10)

—(1/mD)
t) . (11)

M= Mf( £
8]

For polymer measurements, the Hf conversion factor is usually
close to 4, and Mf takes values between 10% and 106 g/mol. Benoit
and co-workers [29] introduced the universal calibration concept
for GPC (that was subsequently also applied to SEC), which used
the hydrodynamic volume, and here the nonrelaxed melt volume
is used. Fig. 2b shows the melt calibration curve for polystyrene (PS)
and compares it to the SEC calibration.

We need to convert RED w'(t) to MWD w(M) or in logarithmic
scalesw(log M) = w'(log t). When an effective distribution function
w/(logt)is found from the best fit to the relaxation modulus, we can
convert it by variable transformation to w(log M) using the standard
as multivariate change-of-variables formula used with GPC/SEC, Eq.
(11),and the exponent (i.e., conversion factor between scales Hf and
the polymer structural value Mf results shown in Fig. 2c).

The correct value of the Mf factor for each polymer
type is found from fitting GPC, SEC, absolute multiangle

light-scattering measurements, dynamic measurements, and
models.

The response for RED w/(t) of the different effective frac-
tions is not linear, since different types of polymer mixtures or
some complex molar structures can be involved, and hence we
have to use a curve-fitting procedure similar to that used with
universal calibration as presented in Fig. 2b. The two dashed
nonlinear SEC calibration curves in the figure are found in prac-
tice after several analyses. It is noteworthy that the linear curve
for LCB polyethylene (PE) is the same as that for the base
MWD.

2.4. Effective distribution w'(t) by the characteristic model

We have to extract effective distribution w'(t) from Eq. (9), but
attempting to do this directly leads to an ill-posed problem. Thus,
to make the computations practical we use the faster and sim-
pler characteristic model to obtain the form of the RED curve and
MWD.

We first approximate the convolution integral in Eq. (9) as a
summation, from which it is then possible to solve derivative w'(t)
directly by computation. Eq. (4) was previously converted to the
logarithmic form for system response y(logt), which is actually
the sum of impulse responses as a series of logarithmic time steps
AlogT as a function of i items:

y(logt) = Z(w(i AlogT)Alog T)h(logt — i Alog T).
i=0

(12)

If we set AlogT— 0, this equation simplifies to the original
convolution form shown in Egs. (4) and (5). To obtain the sam-
ple or characteristic response y.(logt) for characteristic relaxation

log t

t 1 1 ", "
e—log-:c-;__c[j( P'w'(log T)+P"w (IoglR))d log T

P'w'(log t)

(a) (b)
t log t 1A
-logz |w(log 7)d log <
14+E ) o
Q
U]
w(log t)
0 0L
l1 l:2 l3 '4> 5
10 10 10 10 10
t(s)

'
-4 -3 -2 -1 1 2 3

0
10 10 10 10 10 10 10 10

t(s)

Fig. 3. Schematic models of the relaxation modulus. (a) The standard normal rheologically effective distribution (RED), w'(t), plotted on a logarithmic scale with 7.=1s.
Its characteristic relaxation is very close to the classical Maxwellian single-element relaxation, with A =100s (dashed line). (b) Relaxation by Eq. (13) using the log-normal
distributions w'(log t) and w”(log t/R), with constants 7. =10"%s, P and P” set completeness to 0.1, and R=10%. Both normalized relaxation moduli G(t)/Go and logarithmic
log G(t) with illustrated Go = 10 Pa are shown. Typical similar real polymer has the average molecular weight M,, in the range 100,000 g/mol, and the polydispersity index,

M|M, below 1.2.
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—
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| converTTOTHEMWD |l

CHECK RESULTS BY
ANALYTICALMETHOD

Fig. 4. Flowchart for the algorithm used to determine the MWD and the modelled relaxation modulus on a logarithmic scale and respective data flowchart of the procedure.
Thick lines show derivative results, and thin lines are the results for the characteristic and analytical models. The best fit to AG(t)min is obtained by a standard numerical

least-squares computation.

time 7, we set it equivalent to the shifted impulse response, or
i AlogT=log .. The time-shifted impulse response is now con-
verted to logt/tc, and the complete formula becomes a standard
integral. See illustrations in Fig. 3. Thus, in analytical Eq. (9), relax-
ation modulus G(t) can be approximated as a standard integral of
the RED and we obtain characteristic relaxation modulus G¢(t) for
constant 7. as

log t
log 24 _ 1og L / (P’w’(log 04 Pw (1og 5)) dlogr.
0 Tc J_o R

(13)

The logarithmic impulse response has the greatest influence
in this special case at time ty in Egs. (4) and (12), where 7. is
also rather small, approaching AlogT at small values of index
i. These points are most representative of the convolution and
the relations from w'(logt) to G(t) and G¢(t), which we show in
Section 3.3 to be within the measurement error. A novel idea is
to use originally normalized G(t) and w'(t) distribution in both
methods, for which the lack of absolute values do not cause
difficulties.

This procedure removes the absolute value of the pulse
response, but this is not a problem since we were originally using
only relative values. The relaxation modulus obtained from this
simple characteristic model is very close to that obtained from the
analytical model shown in Fig. 5, and within the G(t) measurement
errors. Both the analytical and characteristic models have the same
distribution w'(t) giving the system response as relaxation modu-
lus data G(t). Of even more importance is that Eq. (13) can be solved
for apparent and characteristic effective distribution w,(t) simply
by deriving as follows from the measured G(t) to accurately obtain
the shape of the RED curve:

we(logt)

= +P

d 1 [logGt)/Go) ., ["%°
“dlogtP’ log(t/7c) [ w”(log(t/R))d log T

o0

(14)

Normally, distribution w’(logt) and its copy w”(logt/R) have
zero or minimal overlap. The effective distribution can be computed
over several iterations to find the best fit between the measured
and modelled viscosities. During each derivation, the Rouse distri-
bution w”(log t/R) can be assumed to be constant, and a new form
is refreshed with a new w'(logt) for each iteration. The RED curve
is precisely obtained from Eq. (14) in the measurement range using
direct numerical differentiation.

Now we can again model G(t) according to analytical for-
mula Eq. (9) using the obtained RED and even attempt to solve
w/(logt) with regularization methods and the aid of a priori
knowledge. Since this analytical method requires considerable
computation time and the obtained RED curve is not accurate,
we only present results for the characteristic model; however,
both models can complement each other in simultaneous parallel
computing.

The P’ and P’ values differ between the analytical Eq. (9) and
characteristic Eq. (13) model, but their values are easily found by
computation (Fig. 4).

In summary, we first apply a rapid integration method based
on derivatives for the time-consuming cyclic computation. The
relation between MWD and measurements obtained using the
characteristic method is then confirmed using the analytical
method. These two methods are complementary, and can be used
in parallel computing.
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2.5. Relaxation modulus level from viscosity data 10°.
< Measured data

In cases where we are using only viscosity data, we do not obtain g8 = E{Zﬂ mm :;: :::;i;'m
the absolute level of the relaxation modulus directly. Since we 1 -== From meas. G(t) by characteristic
simultaneously obtain the zero viscosity (1) using a wide-range ~= From meas. G4f) by analytia|
viscosity fit and the normalized relaxation modulus, g(t) = G(t)/Go, E 10
we need tools to find an absolute value for Gy. Here we can use ~
standard simple numerical fitting proceduges such as bracketing, o 102
while solving Eq. (13) by testing with new Gg values to obtain the |
new Gg = Co.

%0 10"
no = / tGog(t)d logt. (15)
- 10° . . : . .

An alternative, simpler procedure can be used if we know even a 102 107 10° 10" 10% 10° 104
single data point in the measured relaxation modulus curve G(t) t(s)

and MWD with known constants.
2.6. Assumptions and limitations

In principle, relaxation modulus G(t) data are suitable as a data
source, but have been found to be of limited use in computa-
tions due to distortion resulting from procedural and instrumental
sources. During experiments, some deformation always occurs
before relaxation. The simulation is at best a two-step process,
because earlier states and deformation histories considerably influ-
ence the measured properties. Inertial forces of the oscillating head
of the device also cause visible errors in the G(t) data. However, very
recently there have been promising developments in rotational
rheometers to obtain more accurate G(t) data.

Whilst developing the principle, we found that the relation
between the measured storage G'(w) and loss modulus G”(w) does
not fit accurately in principle, with only the complex modulus G (w)
being reliable. This explains why there is no widely used regular-
ized method for generating the relaxation modulus, G(t). Moreover,
no developed master curves or conversions give direct and accurate
experimental data for analysis.

1 (a)

by G(t)

G (Pa)
=)

101 2.
0 "

107, %
10 10

Y

ERER
10 10 10 10 10 10 10
t(s)

=]

—-
o

(©

M(t)

-

i
Co v “n Po

M (g/mol)

-

4 3 2 10 1 2 3 4
10 10 10 10 10 10 10 10 10
t(s)

—

Fig. 5. Relaxation modulus for IUPAC A LDPE in the range of measurements per-
formed by Meissner [30] from 0.1 s only up to 80 s at 150 °C. Both analytical Eq. (7)
and the derived characteristic equation (Eq. (13)) show minimal differences between
the models over the measurable range shown with larger markers, and are virtually
indistinguishable.

The glassy modulus relaxes within 10-1's, which can be
modelled easily by adding to Egs. (9) and (13) the third
RED™ distribution P”” w”'(t) close to the same time period.

3. Experiments
3.1. Procedure and test polymers

All the computations described here were performed on a stan-
dard PC using RheoPower software and the characteristic model
described by Egs. (13) and (14), except for Fig. 5, which also used the
analytical model. A data record is first imported into the databases,
the Mf and Hf constants are selected, and then the programs are
run on the PC. It is well known that detecting the MWD and
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Fig. 6. From relaxation modulus to MWD of IUPAC A LDPE at 150°C. (a) Thicker segment of measured relaxation modulus G(t) and wider thin dashed curve generated by
modelling from complete w(t) of (b) using Eq. (13). (b) Thicker segment of the curve of the rheologically effective distribution (RED), w(t), was computed directly from
measured relaxation modulus G(t) using Eq. (14), and thinner dashed segment was obtained by applying a standard best-fit procedure between measured and modelled G(t)
as in (a). (c) Melt calibration curve M(t) according to Eq. (11) transforms w(t) to MWD w(log M). (d) The MWD is converted from RED function in (b) in a manner similar to
GPC/SEC techniques. It is now possible to analytical compute G(t) backwards from the obtained MWD so as to check the accuracy of the analysis results.
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modelling the rheology is most difficult for polyolefins among all
polymers.

LDPE IUPAC A low-density polyethylene (LDPE) was adopted as
the LDPE sample since measured data are available and this mate-
rial has been used in many other studies or “Melt I”, first published
by Meissner [30].

3.2. Constants

The default value of R=106 for distance was set for the Rouse
shear range distribution except for Fig. 3 was used R=10°. For the
LDPE sample, Mf=37,800¢g/mol at 150°C was used. The relation
scale exponent for PE, Hf =2.05, was taken as constant for poly-
olefin with a plate-plate oscillating rheometer. It must be noted
that Hf=2.5 represents the use of a cone-plate head, and that
the value for PE has increased recently thanks to developments
in GPC/SEC and viscoelastic measurements. For comparison, the
respective constants for PS were Mf=136,000g/mol and Hf=4,
as commonly used for all other polymers except above poly-
olefin. Please note that the values P and P’ were developed
by the G(t) fitting procedure and no ad hoc constants or values
were used.

A constant characteristic time of 7.=10"%s was used in the
relaxation simulations.

3.3. Modelling relaxation modulus

We wanted to use the relaxation data measured at 150°C for
IUPAC A as obtained manually from the sources stated by Meissner
[30-32]. For this we drew an MWD curve by eye in RheoDevel-
oper (RheoPower) to provide a curve close to the original relaxation
modulus curve. The average molecular weight My, for this LDPE was
measured originally to be 472,000 g/mol, and the polydispersity
index, M/M,, was 24.9. We therefore used My, = 480, 000 g/mol
and M/M; =25 in our modelling.

The data for LDPE are collected in Fig. 5, which shows the relax-
ation modulus measured by Meissner [30] at 150 °C and computed
for IUPAC A. The figure indicates that the five relaxation curves are
very similar (where the appropriate information is available). The
MWD as measured by GPC was drawn using RheoDeveloper, and
the relaxation modulus was computed using both analytical Eq. (9)
and characteristic Eq. (13) models. The last two curves that used
G(t) data were measured by RheoAnalyzer, which developed inter-
nally the MWD or the better RED, and this distribution was used to
model backward to get wide G(t) fit curve. The wide scales of the
relaxation modulus curve at 150 °C computed using the integration
formula and the MWD are shown in Fig. 6a.

4. Conclusions

A new method for modelling linear viscoelasticity and polymer
properties is presented here, which is mathematically based on the
control theory and on the concept of relations for melts and molec-
ular weight fractions. Here the method has been used to determine
the MWD from viscoelastic data and vice versa, providing a novel
solution to this known ill-posed problem that shows that the MWD
can be obtained directly by derivation. Complete linear viscoelastic
relaxation involves chain dynamics, since the initial Rouse relax-
ation according to the RED gives only a viscous response in the
measurement range, whereas the mainly elastic RED is affected by
entanglement relaxation. Since these REDs exhibit only minimal
overlap on the relaxation timescale, it is possible to extract the RED
and further the MWD by melt calibration. This generates an accu-
rate viscoelastic relaxation modulus, although it is composed from
two separate viscoelastic REDs.

We are currently improving the analytical model, performing
simultaneous parallel computations, and comparing the results
between analytical and characteristic models. The major known
limitation of our method is that relaxation modulus is difficult to
measure directly, with the use of complex viscosity data in the
procedure giving a much more accurate MWD and other results.
Further results with a deeper explanation and more polymer types,
and a description of the numerical methodology of the proce-
dure are available elsewhere by Borg and Pdaiakkonen [32]. In short,
our procedure is more understandable from the viewpoint of G(t).
Whilst the principle underlying our procedure is simple, the numer-
ically sensitive and labile recursive exponential formulas require
the use of accurate data with specialized software to achieve high
computing accuracy.
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