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Start-up and transient shear-stress flows are modelled here using the recently 

generated constitutive model for linear viscoelasticity of polymers.  The relation derived 

from control theory and the melt calibration procedure has been developed between the 

relaxation modulus, dynamic viscosity and molecular weight distribution (MWD).  This 

study extends the start-up, decay, and transient effects of linear viscoelasticity on stress and 

viscosity from the novel viewpoint of the classical Boltzmann superposition principle.  We 

show that shear viscosity is not only a “viscometric function” but also linearly viscoelastic.  

Moreover, for a constant MWD, application of the method to melt calibration allows 

interconversions between rheological functions that depend on frequency, shear rate and 

time.  A Cox-Merz rule and power law are also verified.  The shear viscosity measurements 

of well-characterized classical low-density polyethylene (LDPE IUPAC A) with a known 

MWD were used to obtain time-dependent stress and viscosity transitions.  The developed 

formulas model the start-up situation with an overshoot effect, shear-stress growth, and 

decay coefficients.  Simulations were performed for relaxation modulus measurements at 

different shear histories defined by the effective viscosity.  Dynamic moduli components 
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were modelled, with the results compared with measurement data.  As an example of 

practical applications, capillary flow and injection moulding for producing a mobile-phone 

cover were modelled to obtain the pressure loss and orientation level for every element in 

finite element models, which predicted the shrinking and warping of the end products. 

Keywords: Polydispersity; Transient viscosity; Shear history; Simulations; Orientation 
 

 

1.  Introduction 

Numerous studies (e.g. [1–6]) have modelled the start-up effect using the tube 

concept of Doi and Edwards for linear polymers.  Since polydispersity increases the 

complexity of modelling, monodisperse polymer melts are generally used in multiscale 

modelling. 

We have used an alternative procedure that starts directly from the molecular weight 

distribution (MWD) and viscoelastic properties in a polydisperse structure [7,8], which are 

converted here for shear viscosity and flows with different transitions.  This is possible 

since molecular weight fractions are linearly interrelated by control theory and melt 

calibration procedures.  Our simpler characteristic model rather than our analytical one can 

be used for these flow simulations, since this choice does not significantly influence the 

comparison with measured data. 

We first present the formulas for steady shear viscosity, and then explain the use of 

the time-dependent linear transient viscosity rather than the shear stress.  A wide range of 

modelled viscosity functions for the ramp test is presented, the results from which can be 

used in a simple parallel model to simulate start-up measurements.  We introduce a novel 
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way to explain and sum all shear histories based on the respective effective viscosity using 

a new version of the classical Boltzmann superposition principle.  The importance of the 

effective relaxation state is highlighted before describing relaxation and other 

measurements.  Finally, the dynamic measurements are modelled and general sources of 

errors are discussed.  Some practical uses are presented in simulations of capillary flow and 

the filling of injection-moulded parts [9].  This study focuses on shear deformations, and 

extension cases are not discussed. 

The presented principles could aid the development of microstructural tube theories 

and complete micro–macro relations.  Also, the tube concept is needed to model absolute 

stress and viscosity at some defined shear rate or frequency for the molecular weight 

fraction presenting a monodisperse polymer. 

One of the major aims of this study was to show that the approach based on control 

theory and melt calibration represents a powerful tool for modelling different viscoelastic 

flows that remain linear even at rather high strains or shear rates by introducing a novel 

effective viscosity schema based on a revised Boltzmann principle.  The focus of the paper 

is on deriving the necessary formulas, and hence only brief results are presented.  

Moreover, our use of a polymer structure with only two user-set factors contrasts with other 

models that need up to ten such factors, confirming the simplicity and versatility of our 

method. 

Classically, steady simple shear flow )(γη &  is known as “viscometric flow”.  We 

show using linear control theory and the MWD that this viscometric function is actually 

linear viscoelasticity.  Note that normal forces are not discussed in this paper. 
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2.  Theory 

2.1. Characteristic model for shear viscosity 

The procedure used to derive the following characteristic formula for shear 

viscosity is similar to that presented earlier for relaxation modulus [7] and complex 

viscosity [8]:  
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The rheologically effective distribution (RED), w'(logγ& ), is a function of shear rate 

on a logarithmic scale, and the characteristic shear rate, cγ& , is on the order of 1/s.  The 

default ratio of elastic distribution w'(logγ& ) to the viscous w''(logγ& ) distribution (RED'') 

was R = 106, as also used earlier.  An alternative model based on a more complex analytical 

formula inverted for shear viscosity in similar way can be used, but this produced no 

noticeable difference when modelling the viscoelastic properties over the measured ranges. 

 A simple relation can be written for the melt calibration, M(γ& ), as a function of 

shear rate, where the value of Mf is M at s/11 =γ& : 
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This formula can be used to convert MWD w(log M) into RED w'(logγ& ) or 

w'(logγ& ) = w(log M), as needed in Eq. (1). 

We used a similar procedure (with the correct selection of Hf and Mf) to express 

RED w'(log γ& ) as a function of time t or frequency ω starting from the same polymer and 

MWD.  Thus, we use MWD w(M) to convert viscoelastic data between different 
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deformation modes, and thereby explain the general form of the Cox-Merz rule [10].  All 

presented formulas of principle (except for the approximation formula used for the 

relaxation spectrum) are commutative, associative and distributive, and thus they exhibit 

linearity and linear viscoelasticity. In all types of rheological flows, there are different type 

variables, and the same polymer with a constant MWD. In other words, the same constant 

MWD w(M) is used as the starting and constant reference point for different linear flow 

scales of t,  ω and γ& , which do not give their direct interrelations.  Differences arise from 

Hf and Mf values and also from P' and P'' values depend on the flow type. 

 

 2. 2. Boltzmann superposition principle for transient viscosity and history 

Transient shear stresses associated with the shear-stress growth coefficient ),( γσ &t+  

are complicated to model at shear rates (γ& ), as illustrated in Fig. 1a, and thus we model the 

time-dependent transient shear viscosity ),( γη &t  at different shear rates.  The transient 

viscosity is a well-known property of many gels and colloids, but is less studied and 

modelled mainly due to the short-period effects in polymers and instrumentation limitations 

during measurements, and attempts are made to avoid the effect during steady-state 

measurements.  Subjecting polymers to high shear rates cause shear thinning as a function 

of time, whereas new low shear rates induce shear thickening.  The physical background is 

related to the probability of chain orientation and degree of entanglement.  This transient 

viscosity can explain some capillary effects and high-speed injection-moulding processes.  

Start-up stress effects are modelled and verified with measurements in the following 

section by generated transient viscosity. 
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Figure 1. Transient shear-stress and viscosity curves, and schematic of the model for the 

start-up situation. 

a. Graph of time-dependent transient stress ),( γσ &t  and viscosity ),( γη &t  during a step 

increase in the shear rate.  The polymer is initially relaxing to steady-state limit )( 0γη & , 

when a new shear rate γ&  is imposed at t0 for effective viscosity η̂ .  The viscosity curve 

appears to be significantly simpler than the stress curve. 

b. Schematic of the parallel model for stress growth function +σ  by time-dependent 

relaxation stress +
tσ  and secondary elongation stress +

εσ  of the shear. 

 

To describe stress and viscosity at different induced shear rates, we use a caret to 

indicate the effective old viscosity η̂  at t=t0 developed at a shear rate 0γ&  or η̂ = ),( 00 γη &t , 

which reaches [ ] )(),(lim 00 γηγη && =
∞→

t
t

 in the steady-state situation.  Depending on the shear 

history, effective viscosity η̂  at time t=t0 may vary considerably from its steady-state limit 
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)( 0γη & .  In other words, low-quality measurements might yield true effective viscosity η̂ , 

which can differ from true steady-state viscosity η . 

New imposed shear rate γ&  results in the viscosity gradually approaching its limit 

[ ] )(),(lim γηγη && =
∞→

t
t

.  The negative or positive viscosity difference ηηη ˆ−=Δ  approaches 

zero as a function of normalized relaxation g(t)=G(t)/G0.  However, during a constant shear 

all of the molecules do not relax or orientate to every possible direction (or, at least, the 

effect is minimal in the perpendicular z direction), and thus we need dimension exponent 

D~1/3 since the relaxation of orientation change is in one direction.  The time-dependent 

transient viscosity is added to the effective viscosity η̂  at time t=t0: )(ˆ),( tt ηηγη Δ+=& .  At 

different shear rates the stress results from the continuous loading of the molecules rather 

than relaxation, and we get 

Dtgt ))(1()ˆ)((ˆ),( −−+= ηγηηγη &&       (3) 

Now we rewrite the Boltzmann superposition principle for shear viscosity and molecular 

orientation: the total effect of applying several shear deformations and changes in 

molecular orientations is simply the sum of their individual effects.  Molecular orientation 

is also related to the effective viscosity, as discussed later.  We obtain the general 

summation from Eq. (3) as follows: 
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For continuous changes in viscosity and orientation, this sum is generalized to an integral 
as  

 ∫
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Eqs. (3)–(5) can model transient shear viscosity ),( γη &t  even at high shear rates 

since η̂  is used as an absolute starting level with g(t) in a novel manner, where the polymer 

state can be far from the zero state or starting point. 

   The Boltzmann superposition principle yields the linear viscoelasticity in a similar 

way as for all earlier presented formulas for control theory and melt calibration, and we can 

conclude that we now have linear viscoelasticity starting from the MWD to the transition 

effects. 

 

2.3.  Shear stress growth and decay coefficients  

In the start-up situation, shear stress growth function σγσ ≡+ ),( &t  and respective 

shear stress growth coefficient 
γ
σγη
&

&
+

+ ≡),(t  can be expressed according to nomenclature 

[11] as approaching its steady-state limit as 

[ ] )(),(lim γηγη && =+

∞→
t

t
        (6) 

The application of a shear stress to a well-relaxed polymer may result in overshoots 

of stress growth coefficient ),( γη &t+  and the molecular elongation forces.  There are two 

types of stresses for stress growth function +σ :  (1) time-dependent relaxation stress +
tσ  

and (2) the shear rate growth, which generates elongation stress +
εσ for chains before a new 

orientation and steady state is reached. These forces act in parallel as shown in Fig. 1b, and 

we can write a simple formula for +σ  that is analogous to parallel resistors in a electric 

circuit: 
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 In Eq. (7) we can use Eq. (3) for transient viscosity ),( γη &t , formulas tγγ &=  and 

γησ &= , and simple algebraic conversions such as multiplying by γ&  to obtain 
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Since elongation stress +
εσ = εη &E  is a function of Hencky strain rate ε&  and  Trouton 

viscosity Eη , we have to convert these into a function of the shear rate.  In the linear case 

)(3)( γηεη && =E  and the stress can be written as +
εσ = εη &E = εγη && , where the extension shear 

rate is γγε && 3=  and is lower at somewhat higher rates in the non-linear case.    

After simple algebraic conversions, this finally yields the formula for start-up flow 
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For shear-stress decay coefficient 
εγ

ση
&

−
− ≡)(t  and after the cessation of steady 

shear, we can use classical formula  

∫
∞

− =
t

dssGt )()(η          (10) 

All of these functions need viscosity measurements as a function of the shear rate to 

generate the relaxation modulus and wide-ranging viscosity flow. 

 

2.4.  Simulations for the relaxation modulus  
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The measurement of relaxation modulus requires at least two steps, including 

simulating the shear history and the shear of the initial ramp.  We rewrote the procedure 

presented in our earlier papers to find effective viscosity η̂  and effective zero relaxation 

modulus 0Ĝ  at t=t0 instead of classical zero modulus G0.  The polymer is no longer fully 

relaxed after a step strain is used to measure the relaxation modulus, and hence 0Ĝ  is lower 

than its conventional value G0.  The effective G0, 0Ĝ , is determined directly by setting t>0 

for conventional relaxation modulus G(t)= 0Ĝ  or by using the respective effective shear 

rate, 0γ̂& , which gives the respective effective zero viscosity )ˆ(ˆ 00 γηη &= .  Eq. (11) can be 

used to obtain the respective 0Ĝ .  The internal effective zero relaxation modulus of the 

polymer, 0Ĝ , tends to G0 during a zero shear situation: [ ] 00 )(ˆlim GtG
t

=
∞→

.  

We used standard simple numerical feedback fitting procedures (e.g. bracketing) 

while solving Eq. (11) by testing the new effective 0Ĝ  values to obtain the formula for 

effective zero viscosity 0η̂ : 

∫
∞

∞−

= tdtgGt log)(ˆˆ 00η        (11) 

where )ˆ(ˆ 00 γηη &=  is determined by the respective effective shear rate 0γ̂& .  In most cases the 

polymer still has some orientation and is not in a fully relaxed state, and thus 00 η̂η >  with 

0γ̂& >0 for the polymer melt, with Eq. (11) yielding 0Ĝ < G0.  All of the shear history can be 

explained by η̂  or with the respective effective shear rate γ̂&  for steady-state viscosity )ˆ(γη & .  
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The effective viscosity is the same as the respective steady-state limit at a constant shear 

rate or γ& = γ̂&  and )ˆ()(ˆ γηγηη && == . 

Now we use relaxation function G(t, γ̂& ) = )()( 00 tGtG Δ− , where )(0 tG  is the 

theoretical relaxation modulus for a fully relaxed state, and )(ˆ)()( 000 tGtGtG −=Δ  with 

)(ˆ)(ˆ
00 tgGtG = .  The principle is similar to that presented for the transient viscosity in 

Eq. (3): 

D

G
tGtGtGtGtG ))(1))((ˆ)(()()ˆ,(

0

0
0000 −−+=γ&      (12) 

Relaxation function G(t, γ̂& ) can be converted to a standard imposed-ramp relaxation 

function G(t,γ ) as a function of strain using the information in Fig. 3 if the shear history, 

implied duration of strain and amount of strain are known. 

Most attempts to model G(t,γ ) using constitutive equations lead to time-strain 

separability functions [12], which are generally not derived from fundamental principles. 

The form of these functions provides theoretical simplicity and practical convenience for 

modelling constitutive equations.  Nevertheless, separability is violated in short-time 

responses immediately after the application of a step strain.  Our basis is the new time-rate 

separability shown in Eq. (3) for transient viscosity and for the relaxation function in 

Eq. (12).  This new approach allows any time window to be modelled even in a highly 

orientated non-relaxed state.  

When a large step strain γ  is applied for a long time before relaxation, respective 

effective shear rate γ̂&  is close to the steady-state shear rate used for deformation.  In the 

opposite case with a high shear rate, the polymer will not have reached the steady state, and 
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relaxation will produce higher forces.  Fortunately, Eq. (3) yields effective shear rate γ̂&  and 

viscosity η̂  to G(t, γ̂& ) at any time, and converts it further to G(t,γ ). 

 

2.5.  Partitioning into dynamic moduli components G' and G'' and transition effects 

Finally, we model the dynamic measurements and compare with the measured 

dynamic storage G' and loss G'' moduli.  We convert the characteristic equation presented 

previously [8] in Eq. (7) for complex viscosity algebraically into the following exponential 

form: 

(13) 

 

Equation (13) comprises two components that can be expressed in complex notation as 
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and we partition Eq. (13) into storage and loss modulus components, where complex 

modulus ωη 00 ** =G  is given by 
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This partition could also easily be applied to the shear viscosity and relaxation 

modulus, or using the computed dynamic storage G' and loss G'' moduli as measured data 

for the familiar deconvolution procedure to obtain G(t).  However, difficulties are 

encountered when modelling certain polyolefin measurements at low temperatures due to 

long transition time effects as discussed in Section 3. 

 

2.6.  Power law  

For simplicity, we set up a very practical characteristic polymer structure function 

Pc(γ& ): 
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In computer simulations it is much more convenient to use the short form of the 

equation, which gives us a simple power-form formula to Eq. (1) and approximates the true 

molecular orientation level and state: 

c
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Setting the characteristic shear rate as γ& c = 1/s yields a simple power law for the shear 

viscosity as a function of shear rate: 

)(
0

γγηη &
& cP−= ,         (20) 

where )(γ&cP  is a function of shear rate as )(log γγ γ
&&

& cc PPe −− = . It is worth noting that the 

relation for power-law index n is nPc −= 1)(γ&  at high shear rates.  According to the used 

principle, )(γ&cP  indicates the influence of effective viscous w''( γ& ) and also changes in the 

elastic w'( γ& ) distribution REDs, which besides incorporating the chain structure relates the 
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orientation and degree of entanglement as functions of the shear rate.  Since power-law 

index n is a constant factor for a polymer sample within the measurement range, it relates 

only to the average chain structure and entanglement probability. 

  

2.7.  Simulating the molecular orientation during transition effects 

Whilst it is important to model the shear stress and viscosity, it is equally important 

to model the molecular orientation during these transitions.  Orientation levels represent the 

memory and source of viscosity.  The exponent form for characteristic polymer structure 

function P(γ& )=P'(γ& )+P''(γ& ), which in principle is shown in Eq. (18), is related to the 

orientation level.  This yields an effective shear viscosity η̂ = 0η
)(γγ &

&
P−  according to Eq. (1) 

modified by some simple algebraic conversions.  During shear rate variations and induced 

shear history, Eq. (20) yields the effective viscosity η̂  for respective effective polymer 

structure function P̂ : 

0

ˆ
log1ˆ

η
η

γ&
−=P         (21) 

Since 0< P̂ <1 normally holds in the characteristic model, the effective exponent P̂  is more 

descriptive in absolute percentage form ( P̂ %=100 P̂ ) or even in relative form: 

    P̂ REL%= 100 P̂ / P̂ MAX scale       (22) 

 

2.8.  Cox-Merz rules  

The original Cox-Merz rule [10] γωωηγη
&

&
=

= )(*)(  and its extended or modified variations 

can be explained using the presented principle.  Different flow scales of t, ω and γ&  do not 
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have direct physical interrelations.  Sometimes Cox-Merz rules hold and sometimes they 

fail completely, and this has been investigated by many studies.  It is not always possible to 

find the correct MWD from control theory, but only on very rarely occasions has the 

viscoelastic properties not been modelled accurately.  For these different flow types the 

same polymer and corresponding MWD are used, but the flow deformations differ. 

We can use the MWD obtained from the melt calibration to generate REDs as a 

function of shear rate, γ& , or w' (log M) = w(log γ& ) or as a function t and ω, using different 

P' and P'' constants and effective zero states 0η̂ , 0*η̂ , or 0Ĝ  depending on the flow type.  

Thus, we can convert viscoelastic data between different deformation modes, and thereby 

explain Cox-Merz rules in the case of P', P'' and the same zero states: 

'',','',',*'',', 000
)(;)(*;)()( PPGPPPP tGMw ηη ωηγη &=      (23) 

In other words, the same constant (MWD w(M)) is used as the starting and reference point 

for different REDs and flow scales of t, ω and γ& , as shown in Fig. 2.  When P', P'' and the 

zero states are the same, Cox-Merz rules hold.  The use of frequency ω (1/s) or angular 

frequency ω (rad/s) could also be adjusted by structural factor Mf to obtain the correct fit, 

with in principle a similar being taken with modified or extended Cox-Merz rules. 

Our presented principle based on melt calibration is much more versatile, and 

allows the conversion to any linear scales by adjusting Mf and scale units using conversion 

factor Hf.       
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Figure 2. Using the presented method of melt calibration yields the MWD that remains the 

same for different flows and scales.  Thicker lines are measured data.  The original Cox-

Merz rule holds if P', P'' and the zero states are the same.      

 

3. Experimental 

3.1.  Procedure, test polymers and constants 

Flow simulations are presented in different ways and from different viewpoints, and 

are compared with measurements if there are data available.  Control theory is known to be 

theoretically capable of modelling a partially observed system.  We first compare the 

results of some transition viscosity and start-up and stress decay coefficient modelling with 

measurements shown in Figs. 3–6.  The importance of relaxation state during relaxation 

and dynamic moduli measurements is also presented in Fig. 7.  Finally, as an example of 

practical applications, simulations of the orientation during capillary flow and the filling 

phase of an injection-moulded mobile-phone cover are presented. 
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Most of the computations were performed on a standard PC using the RheoPower 

software package and the characteristic models described by Eq. (1) for shear viscosity.  

Orientation simulations were carried out with Datapower server software and the version 

from third part of the simulation client software cmv6.  The used polymer IUPAC A, a 

well-characterized low-density polyethylene (LDPE) as described by Meissner [13,14]. 

For the dynamic simulation shown in Fig. 8, and for the orientation simulations of 

capillaries and the filling of injection-moulded parts shown in Figs. 9 and 10, for which 

dynamic measurements at different temperatures were also needed, BASF gave us 

permission to use their oscillating-rheometer data for Lupolen 1840H LDPE (the 

qualitatively similar rheological properties of  IUPAC A LDPE) measured at temperatures 

from 130°C to 250°C.  The complex viscosity [13] and shear viscosity flow curves of this 

polymer are very similar to those of the shear viscosity measurements by Laun [15]. 

 The default value of R = 106 for distance was set for the Rouse shear range 

distribution.  The oscillation rheometer data indicated that Mf = 37,800 g/mol and Hf = 

2.05, and the capillary data indicated Mf = 20,000 g/mol and Hf = 2.  The average 

molecular weight Mw for IUPAC A LDPE was measured originally to be 472,000, and the 

polydispersity index, Mw/Mn, was 24.9.  We therefore used Mw = 480,000 and Mw/Mn  = 25 

in our modelling, and Mw = 235,000 g/mol and Mw/Mn  = 14.1 were used for 1840H LDPE. 

Please note that the values of P' and P'' were found from the viscosity fitting 

procedure, and no ad hoc constants or values were used except for the results presented in 

Fig. 10. A constant characteristic frequency of ωc = 1/s, characteristic shear rate cγ& =1/s, 

and characteristic time of τc = 10–6 s were used.  Dimension exponent D had a value of 1/3 
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in all computations.  The main functions and characteristics of these computations are listed 

in Table 1.  

 

TABLE 1.  Main functions and characteristics of all computations. 

Fig.        Ina 
 

 

Outb Tc  Mw
d Mw/Mn

d Mfe Hfe P' f P'' f  

3   150 480,000 25.0 20,000 2 0.41 0.18 

4   150 480,000 25.0 20,000 2 0.41 0.18 

5   150 480,000 25.0 20,000 2 0.41 0.18 

6 G(t)  150 480,000 25.0 37,800 2.05 0.38 0.20 

7  G(t, γ̂& ), G(t, γ )  150 480,000 25.0 20,000 2 0.39 0.08 

8  G', G'' 200 237,000 14.0 50,652 2.05 0.37 0.25 

9   % 150 240,000 14.6 20,000 2 0.42 0.26 

10   % 130–
250 

240,000 14.6 20,000 2 0.32–
0.44 

0.15–
0.27 

 

aViscoelastic function used as a data source. 

bModelled viscoelastic function. 

cTemperature (oC). 

dAverage molecular weight Mw (g/mol) and polydispersity index Mw/Mn. 

eStructural value Mf and conversion factor Hf. 

 fElasticity and viscosity values P' and P''. 

 

The RheoAnalyzer (Vis-MWD) module was used to compute MWD for Fig. 8 and 

to model complex moduli.  Other figures were produced using the RheoDeveloper (MWD-

Vis) module with capillary measurements at 150°C.  Complex viscosities measured at 
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different temperatures were used for the temperature dependence of 0η  in Fig. 10 in a 

similar way to using P' and P'' constants by simple linear algebra formulas.  The generated 

data files were transferred to the separate DataPower Server program. The procedures used 

are not very sensitive to the form of the MWD used when modelling viscoelastic properties, 

unlike when the MWD is detected from viscoelastic measurements.  

 

3.2.  Simulations of transient, start-up and cessation viscosities, and relaxation and 

dynamic moduli   

We modelled the transient viscosity, which was subsequently used for simulating 

start-up, cessation and relaxation measurements.  We began with the known MWD of 

IUPAC A LDPE, and used the MWD-Vis mode of the software. 

 After the relation between the RED (converted from the MWD) and the measured 

shear viscosity was accurately determined, we generated relaxation modulus G(t) according 

to measurements and fitting with Eq. (9) reported by [7].  Dynamic viscosity measurements 

were used to compute the MWD, and modelling G(t) at a fully relaxated state G0 without 

any shear history at an effective shear rate γ̂&  = 10–6/s gave the zero viscosity 0η  = 0η̂ .  The 

highest fractions of the MWD set this zero rate point during viscosity modelling.  Equation 

(3) could be used to generate transient viscosity ),( γη &t  from the steady and effective shear 

rate 0γ&  = γ̂&  = 1/s at t = t0 for new shear rates γ& ranging from 0.00001/s to 100000/s, as 

shown in Fig. 3.  Since it is difficult to measure the transient viscosity, the results were 

verified indirectly using start-up measurements. 
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 Although making oscillating rheometer measurements constitutes a different type of 

experiment, there are similarities when using a high orientation degree at high frequency.  

Figure 3 shows why it is better to use a rapid-upward-frequency-sweep test with an 

oscillating rheometer set at its factory default sensitivity, since then the steady state is 

reached more quickly at each frequency.  If the acceptance criterion for a steady state has 

been risen, then the direction of the frequency sweep is not very important.  Rapid effects 

in polymer melts have not been measured due to limitations of measurement devices, but 

similar results have been found for polymer solutions, for which the timescale of transitions 

is longer [16]. 

Logically it can be assumed that for transient viscosity ),( γη &t  during high shear 

rates or with relaxation function G(t, γ̂& ) in a strongly non-relaxed state it should be possible 

to use )(ˆ)(ˆ
00 tgGtG =  with a small 0Ĝ value in Eq. (3) or (12)  instead of G0, since the 

polymer is highly oriented. However, our simulation tests revealed that it is not the case.      

All chains can give response for changes in shear rate or deformation.  Non-

linearities are induced by pressure, density changes or local friction heating for higher rates 

of true flows, and these are not discussed here since our linear models do not hold. 
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Figure 3. Modelled transient viscosity ),( γη &t  over a wide range of γ& values for IUPAC A 

LDPE at 150°C from the steady and effective shear rate 0γ&  = γ̂&  = 1/s at t = t0. 

 We used Eq. (9) for start-up simulations of the shear-stress growth coefficient 

),( γη &t+  and used effective shear rates γ̂&  ranging from 10–6/s to 10–1/s.  The viscosity at a 

steady rate γ&  = 10–6/s was the same as zero viscosity 0η  = 0η̂ , indicating that the polymer 

was fully relaxed and that γ̂&  =10–6/s also.  This state is difficult to achieve in practice, as 

indicated by the results being closer to the measured values with a higher starting effective 

γ̂& .  Measurements were made over 30 years ago by Weissenberg Rheogoniometers [14], 

when inertia forces and other instrumentation errors before t=1 s were higher than for 

modern instruments.  Those studies also found that strain resulted in distortions on a longer 

timescale, on the order of t=100 s.  Thus, the measured overshoot may be too sharp.  

Equation (9) indicates that at longer times the limiting viscosity ),( γη &t+  corresponds to the 
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shear viscosity η  at a rate γ& =1/s, but the values in Fig. 4 are lower due to distortions 

induced by the applied strains and used linear model by setting γγε && 3=  in Eq. (9). 

 

 

Figure 4. Measured and modelled start-up ),( γη &t+  viscosity curves of IUPAC A LDPE at 

150°C.  The specimen was measured at 18 laboratories (wide hatching), and the results 

from the 8 most reliable specimens (narrow hatching) are close to the modelled data up to 

100 s.  The discrepancy for t>100 s is attributable to measurement limitations and 

distortions induced by the applied strains. 

 Transient viscosity ),( γη &t  in Fig. 3 initially decreases monotonically for a higher 

imposed shear rate, but the start-up viscosity (
γ
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rate can still generate overshoot. 
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Figure 5 shows the same simulated results for ),( γη &t+  for a fully relaxed polymer 

on a wider range of new shear rates.  Also high new rates are modelled by linear model by 

setting γγε && 3=  in Eq. (9) and may be found differences in real obtained values. The 

computed results include the curve obtained using relaxation modulus G(t) for the 

conventional equation ∫=+
t

dssGt
0

)()(η . 

  

Figure 5.  Modelled start-up ),( γη &t+  viscosity curves of IUPAC A LDPE at new induced 

lower and higher shear rates.  The lower thick line corresponds to the induced γ& =1/s shear 

rate, as shown in Fig. 4.  The upper thicker line was calculated from the relaxation modulus 

using the classical equation. 

 Figure 6 shows the modelled shear-stress decay coefficient )(t−η  according to 

Eq. (10) after the cessation of a steady shear.  We multiplied the original normalized 

reduced stress viscosity reported by Meissner [13] for IUPAC A LDPE at 150°C by 

−
∞η =19628 Pas, which they did not include.  The measurements again differ from the 
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modelling results for t<1 s, possibly due to instrumentation limitations.  However, modern 

rheometers are able to measure the viscosity better at the beginning of the runs. 

 

 
Figure 6. Modelled shear-stress decay coefficient )(t−η  after the cessation of steady shear. 

The measurements of IUPAC A LDPE at 150°C are indicated by the hatched area. 

 Relaxation modulus G(t,γ& ) was simulated for the polymer with a different shear 

history for the respective shear rate at t0.  Not only the shear history but also the imposed-

ramp strain affects the molecular orientation, and during practical tests the polymer always 

exhibits a higher effective shear rate γ̂&>10–6/s, giving a lower effective viscosity 0η̂ < 0η  

for shear-thinning polymers.   This gives a lower effective computed relaxation modulus 

0Ĝ <G0 according to Eq. (11), and the results are shown in Fig. 7 for effective shear rate γ̂&  

giving the respective 0η̂  and thus 0Ĝ  values. 

Interpolation of the measured relaxation modulus at t=0.1 s indicates that the 

correspondence is closest for γ̂& =0.0025/s, which does not indicate a well-relaxed polymer 

and is much more than the fully relaxed state at γ̂& =10–6/s . 
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More relaxation measurements could be simulated using a chart for ),( γη &t  similar 

to that shown in Fig. 3 but starting from a steady shear rate γ& = γ̂& =10–6/s.  Knowledge of 

the imposed strain and time would make it possible to simulate also the polymer relaxation 

state before relaxation and determine the standard imposed-ramp relaxation function 

G(t,γ ). 

 

 
Figure 7. Simulated relaxation modulus G(t, γ̂& ) at different effective shear rates related to 

effective zero relaxation modulus 0Ĝ  and also for more familiar G(t, γ ) tests. 

Finally, we modelled the dynamic measurements and compare the results with 

measured the dynamic storage G' and loss G'' moduli with measurements according to Eqs. 

(16) and (17).  We did not have dynamic data for the original IUPAC A LDPE, so we 

instead used the qualitatively similar rheological properties of 1840H LDPE in the 

simulations. 
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Figure 8. Measured data (shown by symbols) and modelled storage G', loss G'' and 

complex G* moduli for 1840H LDPE (a modern version of IUPAC A) at 200°C.  Similar 

results were obtained at higher temperatures, but the discrepancy between G' and G'' 

increased at lower temperatures.  There were no obvious difference between measured and 

modelled G* and the complex viscosity. 

The simulations revealed an odd phenomena: at temperatures from 190°C to 250°C 

the simulated data matched the measured data well, and crossing point was at 5/s for both 

procedures as shown in Fig. 8; whereas at lower temperatures down to 130°C the crossing 

points were not generated in the simulations since the modelled G' was much less than the 

measured G'.  As discussed in our previous paper [8], software uses accurate values of the 

complex viscosity η * and modulus G*, for which there were no visible differences.  That 

is why only complex data were used to detect the MWD.  This might be due to the 

relaxation in some part of storage modulus G' being detected as loss modulus G''.  These 

error and discrepancies could be corrected by development new measurement methods. 
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3.3.  Simulations for orientation level 

Since the modelled and measured MWDs are related to molecular orientations at 

different deformations, we can use the principle reported by Borg et al. [9] to model 

orientation during flows and for final end products, where a high degree of orientation can 

cause warping and dimensional deviations over time.  This would simultaneously provide 

accurate and complete pressure data, and an explanation for the entrance effects.  Also, the 

filling phases of high-speed injection moulding could be simulated based on measured data, 

which is not possible by other ways using the original measured viscosity data for 1840H 

LDPE. 

This information was used for capillary simulations using finite element modelling 

(FEM).  Figure 9 shows the orientation in a 30L/D capillary tube, whose cross section was 

divided into five tubular layers of different diameters for FEM. FEM was performed using 

cmv6 simulation software, which stores the shear history and orientation for all grid 

elements in old P̂ %=100 P̂ (γ& ) values.  Before performing the new data request, cmv6 

computes time step t, new pressure P, temperature T and imposed shear rate γ&  for all the 

finite elements.  DataPower (a server-based program) supplies every element in cmv6 (a 

client program) the new transient viscosity and P̂ % value to store in memory.  Data 

transfers for the elements are performed via a small open-source DLL program 

communicating with the client and server as follows: 

Client: (t, P ,T , γ& , P̂ %) => Server: ( P̂ %, η̂ ) 

where Server computes the new effective orientation P̂ % and viscosity η̂  for every 

element, and sends the new data to the cmv6 program. 
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We found that a certain transition time is needed before the orientation reaches its 

new steady-state value at a higher shear rate in the capillary, and during relaxation in the 

polymer element after the capillary is withdrawn.  The influence of pressure is not included 

so as to better illustrate the transient effects. 

 
Figure 9. Orientation simulation for different layers in a 30L/D capillary tube at 150°C.  

P̂ % values showing the degree of layer orientation as a function of radius and position in a 

capillary tube (illustrated at the top of the figure). 

The orientation for a mobile-phone cover during the filling phase of injection 

moulding at one layer is shown in Fig. 10 in colour, where regions with higher P̂ % values 

are darker (where the orientation was also higher). The filling was complete in 0.3 s, and 

there was nonhomogeneous turbulence in the orientation at t=0.1 s during the filling phase 

(as shown in Fig. 10).  It appeared that the melt flow was labile at high shear rates on the 

order of at least 10000/s.  The orientation results were similar at different filling rates, but 

relaxation was evident close to the front surface.  Further differences in the orientation level 

were evident in different layers, less in the top and bottom layers and more in the middle 

layers.  The presence of a high residual orientation level in a completed cover can result in 
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warping, and such pieces cannot be used in the final phone assembly due to dimensional 

deviations. 

 
 
Figure 10. Orientation simulation layer at t=0.1 s during the filling of an injection mould 

for a mobile-phone cover.  Different coloured regions and respective P=values/100 indicate 

orientation levels in the filled melt. 

The combination of accurate complex viscosity measurements from an oscillating 

rheometer with capillary measurements can be used to generate complete analytical data.  

This offers more accurate simulations of pressure and the degree of orientation, which is 

related to the shrinkage and warpage of injection-moulded parts.  Even though the results 

presented here fit well with practice, they are preliminary and hence further analyses are 

required. 
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4. Conclusions 

We have modelled transient viscosity ),( γη &t  as a function of time starting from the 

MWD, and also described effective shear rate γ̂&  and respective effective viscosity η̂  in the 

shear history of a polymer melt.  These results were used to model start-up viscosity 

),( γη &t+  with an overshoot, according to measurements.  The cessation after shear ),( γη &t−  

and realistic effective relaxation modulus depending on the shear history were modelled in 

a similar way.  All of the results were consistent with measurements, and moreover our 

modelling technique can be applied of a very wide range of values that cannot be measured.  

One reason for the good results is the use of our new time-rate separability basis for 

functions instead of the normally used time-strain separability, which is violated in short-

time responses. 

 The study has shown that shear viscosity is not only a viscometric function but also 

linearly viscoelastic.  Similarly, the general Cox-Merz relations have been verified starting 

from the MWD and power-law formulas, and also the reasons for probable discrepancies 

have been presented.  Factors of practical importance to viscosity measurements are 

demonstrated, such as why frequency-sweep measurements with an oscillation rheometer 

must be performed with upward-sweeping frequencies for well-relaxed samples in many 

cases, and why the measured storage G' and loss modulus G'' are not always reliable, 

whereas complex moduli G* or viscosity η * are. 

The developed models can simulate not only the pressure losses in capillaries and 

when filling injection-moulding cavities, but also the molecular orientation and possible 

dimensional deviations of end products. 



 

31

 

Acknowledgments 

The orientation level was studied as part of EU research project VIM (Virtual Injection 

Molding).  We thank Simcon Kunststofftechnische Software for providing the cmv6 

software and Mr Kimmo Ilen (Elastopoli) for converting the orientation chart for the 

mobile-phone cover.  We also thank all partners of VIM. 

 

References 

[1] D. W. Mead, R. G. Larson, M. Doi, A molecular theory for fast flows of entangled 

polymers, J. Rheol. 31 (1998) 7895-7914. 

[2] G. Marrucci, N. Grizzuti, Fast flows of concentrated polymers: Predications of the tube 

model of chain stretching, Gazz. Chim. Ital. 118 (1988) 179-185. 

[3] D. S. Pearson, A. D. Kiss, L. J. Fetters, M. Doi, Flow-induced birefringence of 

concentrated polyisoprene solutions, J. Rheol. 33 (1989) 517-535. 

[4] P. Rubio, M. H.Wagner, LDPE melt rheology and the pom-pom model, J. Non-

Newtonian Fluid Mech. 92 (2000) 245–259. 

[5] G. Ianniruberto, G. Marrucci, A simple constitutive equation for entangled polymers 

with chain stretch, J. Rheol.  45 (2001) 1305-1318. 

[6]  M. W. Collis, A. K.Lele, M. R. Mackley, R. S. Graham, D. J. Groves, A. E. Likhtman, 

T. M. Nicholson, O. G. Harlen, T. C. B. McLeish, L. R. Hutchings, Constriction flows of 

monodisperse linear entangled polymers: Multiscale modeling and flow visualization, J. 

Rheol. 49 (2) (2005) 501-522. 



 

32

[7] T. Borg, E. J. Pääkkönen, Linear viscoelastic models: Part I.  Relaxation modulus and 

melt calibration, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2008.07.011. 

[8] T. Borg, E. J. Pääkkönen, Linear viscoelastic models: Part II.  Recovery of the 

molecular weight distribution using viscosity data, J. Non-Newtonian Fluid Mech. (2008), 

doi:10.1016/j.jnnfm.2008.07.010. 

[9] T. Borg, M. Keinonen, P. Poranen, E. J. Pääkkönen, in J. W. Lee and S. J. Lee (Eds.), 

Time dependency of viscosity in the flow simulations, Proc. XIVth Int. Congr. on 

Rheology, The Korean Society of Rheology, Seoul, Korea, 22-27 August 2004, CR24. 

[10] W. P. Cox, E. H. Merz, Correlation of Dynamic and Steady State Flow Viscosities, J. 

Polym. Sci. 28 (1958) 619-622. 

[11] J. M. Dealy, Official nomenclature for material functions describing the response of a 

viscoelastic fluid to various shearing and extensional deformations, J. Rheol. 39 (1995) 

253-265. 

[12] Y. Kwon, K. S. Cho, Time-strain nonseparability in viscoelastic constitutive equations, 

J. Rheol. 45 (2001) 1441-1452. 

[13] J. Meissner, Basic parameters, melt rheology, processing and end-use properties of 

three similar low-density polyethylene samples, Pure and Appl. Chem. 42 (1975)  551–662. 

[14] J. Meissner, Modifications of the Weissenberg Rheogoniometer for measurement of 

transient rheological properties of molten polyethylene under shear. Comparison with 

tensile data, J. Appl. Polymer Sci. 16 (1972) 2877–2899. 

[15] H. M. Laun, Pressure dependent viscosity and dissipative heating in capillary 

rheometer of polymers melts, Rheol. Acta 42 (2003) 295-308. 



 

33

[16]  C.M. Roland, C. G. Robertson, Recovery of shear-modified polybutadiene solutions, 

Rubber Chem Tech. 79 (2006) 267-280. 


